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A quasi-canonical sequence of flnlte dimensional quantizations has been

found which has canonical quantization as its limit. In order to demonstrate

its practical utility and its numerical convergence, this formalism is _pplied

to the eigenvalue and "eigenfunction" problem of several harmonic and an-
harmonic oscillators.
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I. Introduction

Harmonic and anharmonlc _ators have long been used to illustrate

new approximation techniques. Here they are used to demonstrate the appli-

cation of an approximation procedure based upon the approach of a sequence

of discrete non-canonlcal quantisations to the standard canonical quantisa-
tion limit.

e_n.ider a d_rete one dimensional_e _ w_ch th_¢oor_ates'of
allowed _t_ns are interger multiples of a fundamental scale: patterer a

having dim_ons of length. Although it is well known that the canonical
commutation rdation : _ .... _

does not admit finite dimensional matrix representations, 1 one can ask whether

a limit procedure exists such that sequences of matrices {Q_t, P_t} satisfy in

some way

_m [q., P,,] = chl (2)
N--*¢o

!

in the weak sense. We have found the answer to be in the affirmative 2 and

therefore briefly sketch the theoretical analysis and apply the formalism to the

numerical eigenvalue and eigenstate problems of harmonic and anharmonic
oscillators.

II. Brief Analysis

The quantum mechanical scalar product of two wave functions in the

Schroedinger representation can be written in the form

(¢,¢) =

a form equivalent to the traditional one. With respect to this scalar product

the $ekroedinger coordinate and momentum representatives have the form

Q(q, qJ) = qg(q - q_),

P(q, q') ------ih O._6(q - 4).
oq

(4)

(5)
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On the other hand in a finitediscretespace representationofthe canonical

coordinates and momenta one defines the Schroedinger representative of the

coordinate operator by the diagonal matrix

0. 0

1/2 o
Qiv = a 0 -1/2 '

0 0 -(# 0_1)/2

(6)

or equivalently in component notation by

q;,.= r_.. (7)

Here a defines the distance between neighboring points in space and N is a

power of 2.

The components of the momentum operator are taken from the discrete

Fourier transform of the diagonal part of Q_,

.p_ Ii2 (#-I)/2 27rk I 2_ih. }= - -T_- s) (8)
k=-(_-0/2

Thus P; is a Woep_t-. m_t_. The expressions (4) and (5) follow from

proper definition of the state space scalar product and limiting procedure.

The state space scalar product is defined by

0v-I)12

(<_, _) = 1_ _ _-£_, (9)

a kf-(N-1)/2

where the bar denotes complex conjugation. With respect to this scalar

product it is convenient for the sake of the weak limiting procedure to write

the rth elgenvector of Q_v as either

q'=5°, (10)
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or equivenently expressed_m terms of the _te_discrete Fourier tremsform as

• 1 07.T-_)/2 ( 2xik. :....

q N;,=_(__x)/exp_---_-[r-s)}: (11)

Using the latter one can verify that

(q' q) = a 6= _aa _[_ exp - r - s) (12)
.... k=--(_-l)12

One can now define the refinement or weak ]imlt as that in which

_va-. oo,a--. o,r_--,q,s_-. q', 03)
so that the matrix product summations carry over into integrals (in the same

way that a Fourier seri_ can be caxriedov_t0 a-Fourier integral). Note

that this appr0ach:diffe_ from those of Others in which the domain of the

right herod side of (2) is restricted to a subepace of the Hi]bert space. 3

For a small enough and N, r, s large enough one can g_ as close as desired

to any reed valu-ed q or q_. -in th_ ca_e using the right-hknd side of (12) one
can see that in the refinement or weak limit

(q,q)-- 6(q- ¢). (14)

Similarly one can see that (2)and (7) and (8) have the weak limits

(q,[Q,P]q)-. ihq_q8(q- q'), 05)

(q,Qq) -. S(q- ¢), (_6)

(q,P q)-_ _h_6(q - q'). (17)

Note that with all of these weak limits the factor _1 associated with the
4

implied metric tensor in the scalar product (9) is essential.

The existence ofthese-_-tS_ Considered sufficient justification for inves-

tigat_g the practical utility of this finite dimensional quasl-canonical quan-

tization. Hence we investigate the eigenvalue problem of several of the oscil-

lators d_ by the Hamiltonian ....

388



III. Oscillator Eigenstates and Eigenvalues

Given (8) and (7) the Hamiltonian (18) can be written in the form

H;,, = --_1C_-x)/22_k((2_k)22mCUaP+ Fra + -_--'_(ra)2+ --/_(ra)') _p t_,-2_k_f(,- s)_j
k=-(_-a)/2

(19)

It now remains to make proper choices of N and a and to carry out the

numerical calculations in a manner comlmtible with a refinement process.

Define exponents n and l such that

N = 2 _, a = a02 "-_, L = a02 *-_, n - a > 0, (20)

where a0 is a length scale appropriate to the problem and where L gives the

physical size of our one dimensional space. Clearly n sets the dimensionality

of the matrix and c_ the refinement. The si_ of the space is L,whi]e the rth

eigenvector q corresponds to the physical coordinate re¢2 *-°.
T

A. The Harmonic Oscillator

For the case of the harmonic oscilhtor (F = _ = 0) it is convenient to

choose

_0= • (21)

With the choices (19),(20), mad (21) the diseretized dimensionless form for

the Hvaniltonian is

_= E 2aa-sn+a + r 2 exp-2_rk ., (22)
_=-(_-x)12

One has different approximations for different choices of n and c_. Fig-

ure I. illustrates the first 4 normalized "wave" eigenvectors for the discrete
Harmonic Oscillator (F = A= 0) with n = 8, a = 1. Amazingly, for the first

two eigenvectors of _; the absolute value of the error between a component
of the eigenvector and the exact corresponding eigenfunction solution to the
Schroedinger equation is less that 10-_ for the ground state and 10-2 for the
first excited state at any of the allowed positions in the discrete space.
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Table I illustrates the numerical convergence of the 1st four harmonic

oscillator elgenvalues as a function of matrix dimenslonallty N and c_.

Table I H.O.

N=2, c_--0 N=4,o_=0 N=8, c_=0 N=16, c_=1

E0 1.3587 .5410 .50018 .5000001

E1 1.3587 1.2186 1.4961 1.499984

F_ - 3.1156 2.5241 2.500205

E_ - 3.7933 3.3582 3.497943

B_ The Asymmetric Oscillator

For the case of the asymmetric osdllator we take the choice

,,.o=  ,Fm) = (23)

The components of the dimensionless Hamiltonian now have the form

N8

Fa0

Figure II illustrates the asymmetric potential while Figure III ilhmtrate8

the solutions to the eigenvector problem for this asymmetric oscillator. Of

interest is the "trapping" in the virtual potential wed occuring with the 4th

energy level, an effect not easily accounted for with other approximation

techniques.

Table II illustrates the numerical convergence of the first four eigenvalues

using several choices of N and c_.

Table H ASYMOSC.

.N= 2,_ = 0 N= 4,_ = 0 N= 8,_ = 0 N= 16,_ = 1 N= 64,_ = 2

Eo --.7507 -9.3999 -19.1162 -19.6787 -19.6803

E1 --1.2493 -3.2519 -16.5510 -15.6227 --15.6025

F-a -- -0.6331 -9.1040 -11.7496 -11.7147

l/:s -- 2.0159 --8.9120 --8.6628 -8.65986
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C. The Quartic Oscillator

In the case of the quartic osdUator (F=_ = 0) the choice

[ 2_h _ {L (24)
ao = _ raAll2J

suffices. In this case the components of the dimensionless Hamiltonian have

the form

k=--(N-_)/2

The quartic oodllator is included here because it has been a frequent subject

of study and its eigenvalues are numerically established. Table III illustrates

the numerical convergence for the first four dgenvahes and gives the "exact"

eigenvalues as numerically established by others 45s using distinct techniques.

TaBle III QUARTIC OSC

N=2, c_=0 N=4, c_=0 N=8,c_ 0 N=16, c_=1 "ezac_

Eo 1.2493 .4498 .4217 .420805 .420804

E1 1.2493 1.2760 1.5587 1.50790 1.50790

ga - 3.0895 2.9422 2.95880 2.95880

F_ - 3.9157 3.8709 4.62128 4.62122

IV. Summary.

The purpose here has been to demonstrate the numerical application

of the quasi-canonical quantization procedure to 1 dimensional oscillatory

systems. With this application it is clear that numerical convergence occurs
for each of the potentials.

The calculation procedure is computa_ionally straightforward since the

momentum matrix (8) can be conveniently calculated using well established

signal processing techniques. 7 in particular, fast Fourier transform (FFT) s

techniques allow for rapid determination of "state" vectors and quantum
Ii UI11]:N_I_
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The approximation procedure utilized here is based not upon the trun-

cation of the wave functions but rather on how well the canonical commuta-

tion relation is approJdmat_. In contrast to usual perturbation theories the

number of allowed states in each order is thesame as the number of allowed

positions. The convergence of this discrete quantization to a canonical one

and detailed derivations of results quoted in the Section II will be discussed

elsewhere. However it is useful to note two important facts about the pro-

cedure. First, the use of the discrete fourier transform (and numerical use

of FFT's s) does not implies the periodicity of space, rather the quantization

is carried out over a finite region of space. Secondly, the matrix QN as a

N--2_dlmenslonal matrix insures not only the faster speed of the FFT's uti-

lized but also that on the discrete scale that Q_ is an invertible matrix for

which the eigenvalue zero exists only as a refinement or weak limit. Thus

one should not expect numerical problems in dealing with coulomb like po-

tentiais.

Finally, with the refinement limit we note that one can get as dose as

one wishes to canonical quantization with discrete space, suggesting that

quantum theory cannot readily distinguish between discrete and continuous

space time. In addition, please note that the combination (9) and (11) al-

lows a sequence of matrices to serve as the definition of requiied generalized

functions, as in (14,15,16,17), somewhat in analogy to the good functions of

Lighthill 9.x0
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